Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Rotational and vibrational energy relaxation (RER and VER) of N2O embedded in xenon and SF6 environments ranging from the gas phase to the liquid, including the supercritical regime, is studied at a molecular level. Calibrated intermolecular interactions from high-level electronic structure calculations, validated against experiments for the pure solvents, were used to carry out classical molecular dynamics simulations corresponding to experimental state points for near-critical isotherms. The computed RER rates in low-density solvents of krotXe=(3.67±0.25)×1010 s−1 M−1 and krotSF6=(1.25±0.12)×1011 s−1 M−1 compare well with the rates determined by the analysis of two-dimensional infrared experiments. Simulations find that an isolated binary collision description is successful up to solvent concentrations of ∼4 M. For higher densities, including the supercritical regime, the simulations do not correctly describe RER, probably due to the neglect of solvent–solute coupling in the analysis of the rotational motion. For VER, the near-quantitative agreement between simulations and pump–probe experiments captures the solvent density-dependent trends.more » « lessFree, publicly-accessible full text available November 14, 2025
- 
            The density dependence of rotational and vibrational energy relaxation (RER and VER) of the N 2 O ν 3 asymmetric stretch in dense gas and supercritical Xe and SF 6 solutions for near critical isotherms is measured by ultrafast 2DIR and infrared pump–probe spectroscopy. 2DIR analysis provides precise measurements of RER at all gas and supercritical solvent densities. An isolated binary collision (IBC) model is sufficient to describe RER for solvent densities ≤ ∼4M where rotational equilibrium is re-established in ∼1.5–2.5 collisions. N 2 O RER is ∼30% more efficient in SF 6 than in Xe due to additional relaxation pathways in SF 6 and electronic factor differences. 2DIR analysis revealed that N 2 O RER exhibits a critical slowing effect in SF 6 at near critical density ( ρ* ∼ 0.8) where the IBC model breaks down. This is attributable to the coupling of critical long-range density fluctuations to the local N 2 O free rotor environment. No such RER critical slowing is observed in Xe because IBC break down occurs much further from the Xe critical point. Many body interactions effectively shield N 2 O from these near critical Xe density fluctuations. The N 2 O ν 3 VER density dependence in SF 6 is different than that seen for RER, indicating a different coupling to the near critical environment than RER. N 2 O ν 3 VER is only about ∼7 times slower than RER in SF 6 . In contrast, almost no VER decay is observed in Xe over 200 ps. This VER solvent difference is due to a vibrationally resonant energy transfer pathway in SF 6 that is not possible for Xe.more » « less
- 
            The transition between the gas-, supercritical-, and liquid-phase behavior is a fascinating topic, which still lacks molecular-level understanding. Recent ultrafast two-dimensional infrared spectroscopy experiments suggested that the vibrational spectroscopy of N2O embedded in xenon and SF6 as solvents provides an avenue to characterize the transitions between different phases as the concentration (or density) of the solvent increases. The present work demonstrates that classical molecular dynamics (MD) simulations together with accurate interaction potentials allows us to (semi-)quantitatively describe the transition in rotational vibrational infrared spectra from the P-/R-branch line shape for the stretch vibrations of N2O at low solvent densities to the Q-branch-like line shapes at high densities. The results are interpreted within the classical theory of rigid-body rotation in more/less constraining environments at high/low solvent densities or based on phenomenological models for the orientational relaxation of rotational motion. It is concluded that classical MD simulations provide a powerful approach to characterize and interpret the ultrafast motion of solutes in low to high density solvents at a molecular level.more » « less
- 
            Label-free vibrational imaging of biological samples has attracted significant interest due to its integration of structural and chemical information. Vibrational infrared photothermal amplitude and phase signal (VIPPS) imaging provide label-free chemical identification by targeting the characteristic resonances of biological compounds that are present in the mid-infrared fingerprint region (3 µm - 12 µm). High contrast imaging of subcellular features and chemical identification of protein secondary structures in unlabeled and labeled fibroblast cells embedded in a collagen-rich extracellular matrix is demonstrated by combining contrast from absorption signatures (amplitude signals) with sensitive detection of different heat properties (lock-in phase signals). We present that the detectability of nano-sized cell membranes is enhanced to well below the optical diffraction limit since the membranes are found to act as thermal barriers. VIPPS offers a novel combination of chemical imaging and thermal diffusion characterization that paves the way towards label-free imaging of cell models and tissues as well as the study of intracellular heat dynamics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
